Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Research and development for safety and licensing of HTGR cogeneration system

Sato, Hiroyuki; Ohashi, Hirofumi; Yan, X.

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 9 Pages, 2018/10

Japan Atomic Energy Agency has been conducting research and development with a central focus on the utilization of HTTR, the first HTGR in Japan, towards the realization of industrial use of nuclear heat. On the basis of licensing experience through the HTTR construction, JAEA initiated an activity to establish an international safety standard for licensing of commercial HTGR cogeneration systems fully taking into account safety features of HTGRs. This paper explains a roadmap towards licensing of commercial HTGR cogeneration systems. A test plan using the HTTR to support the establishment of safety standards and safety analysis methods is also presented.

JAEA Reports

Research on demand of HTGR for investigation of introduction scenario and investigation on heat balance of HTGR

Fukaya, Yuji; Kasahara, Seiji; Mizuta, Naoki; Inaba, Yoshitomo; Shibata, Taiju; Nishihara, Tetsuo

JAEA-Research 2018-004, 38 Pages, 2018/06

JAEA-Research-2018-004.pdf:1.81MB

The demand of HTGR to investigate its introduction scenario and heat balance of HTGR have been researched. First, previous studies of HTGR demand were researched. Next, heat balance of GTHTR300, a commercial scale HTGR design, and its characteristics were researched. By using this information, installation number of HTGR to suit for demand in Japan are evaluated. In addition, heat balance evaluation code was developed in this study.

Journal Articles

GTHTR300 cost reduction through design upgrade and cogeneration

Yan, X.; Sato, Hiroyuki; Kamiji, Yu; Imai, Yoshiyuki; Terada, Atsuhiko; Tachibana, Yukio; Kunitomi, Kazuhiko

Nuclear Engineering and Design, 306, p.215 - 220, 2016/09

 Times Cited Count:4 Percentile:36.53(Nuclear Science & Technology)

The latest design upgrade has incorporated several major technological advances made in the past ten years to both reactor and balance of plant in GTHTR300. As described in this paper, these advances have enabled raising the design basis reactor core outlet temperature to 950$$^{circ}$$C and increasing power generating efficiency by nearly 5% point. Further implementation of seawater desalination cogeneration is made through employing a newly-proposed multi-stage flash process. Through efficient waste heat recovery of the reactor gas turbine power conversion cycle, a large cost credit is obtained against the conventionally produced water prices. Together, the design upgrade and the cogeneration are shown to reduce the GTHTR300 cost of electricity to under 2.7 cent/kW h.

Journal Articles

HTTR demonstration program for nuclear cogeneration of hydrogen and electricity

Sato, Hiroyuki; Yan, X.; Sumita, Junya; Terada, Atsuhiko; Tachibana, Yukio

Journal of Nuclear Engineering and Radiation Science, 2(3), p.031010_1 - 031010_6, 2016/07

This paper explains the outline of HTTR demonstration program with a plant concept of the heat application system directed at establishing an HTGR cogeneration system with 950$$^{circ}$$C reactor outlet temperature for production of power and hydrogen as recommended by the task force. Commercial deployment strategy including a development plan for the helium gas turbine is also presented.

Journal Articles

GTHTR300 cost reduction through design upgrade and cogeneration

Yan, X.; Sato, Hiroyuki; Kamiji, Yu; Imai, Yoshiyuki; Terada, Atsuhiko; Tachibana, Yukio; Kunitomi, Kazuhiko

Proceedings of 7th International Topical Meeting on High Temperature Reactor Technology (HTR 2014) (USB Flash Drive), 7 Pages, 2014/10

The latest design upgrade has incorporated several major technological advances made in the past 10 years to GTHTR300. These advances have enabled raising the design basis reactor outlet temperature to 950$$^{circ}$$C and increasing power generating efficiency by nearly 5% point. Further implementation of desalination cogeneration is made through employing a newly-proposed multi-stage flash process. Through efficient waste heat recovery of the reactor gas turbine cycle, a large cost credit is obtained against the conventionally produced water prices. Together, the design upgrade and the cogeneration result in reducing the GTHTR300 cost of electricity to under 2.7 US cent per KWh.

JAEA Reports

lnvestigation of small and modular-sized fast reactor

; Kawasaki, Nobuchika; ; *; ; ;

JNC TN9400 2000-063, 221 Pages, 2000/06

JNC-TN9400-2000-063.pdf:8.68MB

ln this paper, feasibility of the multipurpose small fast reactor, which could be used for requirements concemed with various utilization of electricity and energy and flexibility of power supply site, is discussed on the basis of examination of literatures of various small reactors. And also, a possibility of economic improvement by learning effect of fabrication cost is discussed for the modular-sized reactor which is expected to be a base load power supply system with lower initial investment. (1) Multipurpose small reactor (a) The small reactor with 10MWe$$sim$$150MWe has a potential as a power source for large co-generation, a large island, a middle city, desalination and marine use. (b) Highly passive mechanism, long fuel exchange interval, and minimized maintenance activities are required for the multipurpose small reactor design. The reactor has a high potential for the long fuel exchange interval, since it is relatively easy for FR to obtain a long life core. (c) Current designs of small FRs in Japan and USA (NERI Project) are reviewed to obtain design requirements for the multipurpose small reactor. (2) Modular-sized reactor (a) ln order that modular-sized reactor could be competitive to 3200MWe twin plant (two large monolithic reactor) with 200k/kWe, the target capital cost of FOAK is estimated to be 260k/kWe for 800MWe modular, 280k/kWe for 400MWe modular and 290k/kWe for 200MWe by taking account of the learning effect. (b)As the result of the review on the current designs of modular-sized FRs in Japan and USA (S-PRISM) from the viewpoint of economic improvement, since it only be necessary to make further effort for the target capital cost of FOAK, since the modular-sized FRs requires a large amount of material for shielding, vessels and heat exchangers essentially.

JAEA Reports

Parameter analysis calculation on characteristics of portable FAST reactor

PNC TN9410 98-059, 53 Pages, 1998/06

PNC-TN9410-98-059.pdf:1.23MB

The analysis program code STEDFAST; Space, TErrestrial and Deep sea FAST reactor ・gas turbine system; had been developed in PNC to get the best values of system parameters on fast reactor ・gas turbine power generation systems used as power sources for deep sea, space and terrestrial cogeneration. In this report, we performed a parameter survey analysis by using the code to study characteristics of the systems. Concerning the deep sea fast reactor ・gas turbine system, calculations with many variable parameters were performed on the base case of a NaK cooled reactor of 40kWe. We aimed at total equipment weight and surface area necessary to remove heat from the system as important values of the characteristics of the system Electric generation power and the material of a pressure hull were specially influential for the weight. The electric generation power, reactor outlet/inlet temperatures, a natural convection heat transfer coefficient of sea water were specially influential for the area. Concerning the space reactor ・gas turbine system, the calculations with the variable parameters of compressor inlet temperature, reactor outlet/inlet temperatures and turbine inlet pressure were perfomed on the base case of a Na cooled reactor of 40kWe. The first and the second variable parameters were influential for the total equipment weight of the important characteristic of the system. Concening the terrestrial fast reactor ・gas tubine system, the calculations with the variable parameters of heat transferred pipe number in a heat exchanger to produce hot water of 100 $$^{circ}$$C for cogeneration, compressor stage number and the kind of primary coolant material were performed on the base case of a Pb cooled reactor of 100MWt. In the comparison of calculational results for Pb and Na of primary coolant material, The primary coolant weight flow rate was naturally large for the fomer case compared with for the latter case because density is very different between them. ...

JAEA Reports

Stationary analysis program code STEDFAST for space, terrestrial and deep sea fast reactor $$cdot$$ gas turbine power generation system (User's manual)

; Sekiguchi, Nobutada

PNC TN9520 95-002, 66 Pages, 1995/02

PNC-TN9520-95-002.pdf:2.55MB

This analysis program code STEDFAST; Space, TErrestrial and Deep sea FAST reactor $$cdot$$ gas tubine system; is used to get the adequate values of system parameters on fast reactor $$cdot$$ gas turbine power generation systems used as power sources for deep sea, space and terrestrial cogeneration. Characteristics of the code are as follows. $$cdot$$ Objective systems of the code are a deep sea, a space and a terrestrial reactors. $$cdot$$ Primary coolants of the systems are NaK, Na, Pb and Li. Secondary coolant is the mixture gas of He and Xe. The ratio of He and Xe is arbitrary. $$cdot$$ Modeling of components in the systems was performed so that detailed modeling might be capable in future and that a transient analytical code could be easily made by using the code. $$cdot$$ A progra㎜ing language is MAC-FORTRAN. The code can be easily used in a personal computer. The code made possible instant calculation of various state values in a Brayton cycle, understanding the effects of many parameters on thermal efficiency and finding the most adequate values of the parameters. From now on, detailed modeling of the components will be performed. After that, the transient program code will be made.

8 (Records 1-8 displayed on this page)
  • 1